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Abstract. We report a new, and relatively simple, procedure for finding new integrable
differential-difference equations. The procedure starts from a rather general differential-
difference equation taken in bilinear form and then searches for appropriate Bäcklund
transformations for it. In this way three particular new integrable differential-difference systems
are found and their corresponding Bäcklund transformations presented.

Hirota’s bilinear method has been of fundamental importance to the theory of solitons
since its inception [1–5]; and it has retained its significance throughout all of the
subsequent developments [5, 6]. It is also the most direct and yet elementary approach
for constructing exact multi-soliton solutions (cf [1–5, 7–9]). More recently the method
has been systematically used in the search for new integrable equations in both(1+ 1)
and (2+ 1) dimensions by finding equations with 3-soliton, 4-soliton, and evenN -soliton
solutions (cf [10–13]); as a result of such systematic tests some new examples of integrable
equations have actually been found. However, by comparison with the continuous case,
similar procedures for detecting integrable systems among the discrete lattices are scarcely
developed. The problem for these discrete cases is that conditions for anN -soliton solution
now become much more difficult to check. In the continuous case theN -soliton conditions
are just polynomial identities. For example, for the Korteweg–de Vries (KdV)-type equation

F(Dx,Dt )f · f = 0 (1)

in which F is a polynomial function of Dx , Dt , and satisfies the conditions

F(Dx,Dt ) = F(−Dx,−Dt ) F (0, 0) = 0

theN -soliton condition is [8]∑
σ=±1

F

( n∑
i=1

σipi,

n∑
i=1

σi�i

) n∏
i>j

F (σipi − σjpj , σi�i − σj�j )σiσj = 0 n = 1, 2, . . . , N
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in which
∑

σ=±1 means the summation over all possible combinations ofσ1 = ±1,
σ2 = ±1, . . . , σn = ±1; Dx , Dt are Hirota’s bilinear operators [7, 8] defined by

Dm
x Dn

t a · b ≡
(
∂

∂x
− ∂

∂x ′

)m (
∂

∂t
− ∂

∂t ′

)n
a(x, t)b(x ′, t ′)|x ′=x,t ′=t .

In this letter, we consider the following bilinear differential-difference equation:

F(Dx,Dt , sinh(α1Dn), . . . , sinh(αlDn))f (n; x, t) · f (n; x, t) = 0. (2)

Here,F is an even polynomial in Dx , Dt , sinh(α1Dn), . . . , and sinh(αlDn), andl is a given
positive integer; theαi , i = 1, 2, . . . , l, are different constants, andF(0, 0, . . . ,0) = 0;

exp(δDn)an · bn ≡ exp

[
δ

(
∂

∂n
− ∂

∂n′

)]
a(n)b(n′)|n′=n = a(n+ δ)b(n− δ).

It is then straightforward to verify that equation (2) always has the 2-soliton solutions

f (n) = 1+ exp(η1)+ exp(η2)+ A12 exp(η1+ η2)

where

ηi = pin+ qix + ri t + η0
i F (qi, ri, sinh(α1pi), . . . , sinh(αlpi)) = 0 i = 1, 2

A12 = −F(q1− q2, r1− r2, sinh(α1(p1− p2)), . . . , sinh(αl(p1− p2)))

F (q1+ q2, r1+ r2, sinh(α1(p1+ p2)), . . . , sinh(αl(p1+ p2)))

wherepi , qi ri andη0
i , for i = 1, 2, are constants.

However, when we want to go on to consider which specific forms ofF admit 3-soliton
solutions, the corresponding calculations become more involved. Accordingly, in the
following, instead of searching for integrable systems by testing forN -soliton solutions,
we propose a rather different scheme. Our procedure is to search for suitableF , G, A and
B such that

[F(Dx,Dt , sinh(α1Dn), . . . , sinh(αlDn))f (n) · f (n)]
×[G(Dx,Dt , sinh(β1Dn), . . . , sinh(βs1Dn))g(n) · g(n)]
= [F(Dx,Dt , sinh(α1Dn), . . . , sinh(αlDn))g(n) · g(n)]
×[G(Dx,Dt , sinh(β1Dn), . . . , sinh(βs1Dn))f (n) · f (n)]

can be derived from

A(Dx,Dt , exp(γ1Dn), . . . ,exp(γs2Dn)f (n) · g(n) = 0
B(Dx,Dt , exp(ω1Dn), . . . ,exp(ωs3Dn)f (n) · g(n) = 0 (3)

wheresi , i = 1, 2, 3, are given positive integers andβi , i = 1, . . . , s1, γj , j = 1, . . . , s2,
and ωk, k = 1, . . . , s3, are constants. In this circumstance, (3) may be viewed as a
Bäcklund transformation for (2) ifG(Dx,Dt , sinh(β1Dn), . . . , sinh(βs1Dn))f (n) · f (n) 6= 0,
a viewpoint which, by the introduction ofF andG, seems somewhat more general than that
of [7] for discovering B̈acklund transformations. Then, otherwise,and in so far as B¨acklund
transformations are characteristic of integrable systems, equation (2) is an integrable system.
Evidently it is relatively simple to find new integrable differential-difference systems in
Hirota’s bilinear form (2) by following this particular route.

In this letter we reportthree new integrable differential-difference equations found in
this way.
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Example 1. In this example we consider

[Dt sinh( 1
2mDn)− 2 sinh( 1

2kDn) sinh( 1
2(m− k)Dn)+ 2α sinh( 1

2kDn) sinh( 1
2(m+ k)Dn)]

×f (n) · f (n) = 0 (4)

wherem andk are two integers andα is an arbitrary constant. In particular, whenα = 0,
(4) becomes an extended Lotka–Volterra equation [14]. Whenm = 1, k = 2, (4) can be
easily transformed into the generalized Lotka–Volterra equation found by Tsujimoto and
Hirota [15]. We can show (4) is integrable in the sense of Bäcklund transformations. In
fact we have the following.

Proposition 1. A Bäcklund transformation for (4) is

exp( 1
2(m− k)Dn)f (n) · g(n)

=
[
λ exp( 1

2(m+ k)Dn)+ µ exp( 1
2(k −m)Dn)+ αµ

λ
exp(− 1

2(m+ k)Dn)

]
×f (n) · g(n)[

Dt − λ exp(kDn)− α
λ

exp(−kDn)− γ
]
f (n) · g(n) = 0 (5)

whereλ, µ andγ are arbitrary constants.

Remark 1. Whenα = 0, the B̈acklund transformation (5) reduces to that in [16] for an
extended Lotka–Volterra equation [14, 16].

Here, in the following, we derive some solutions of the bilinear equation (4) using the
Bäcklund transformation (5). For simplicity, we setα = −1. In this case, by applying
the B̈acklund transformation (5) to the trivial solutionf (n) = 1, we can easily obtain the
following solutions:

(i) the 1-soliton solution

g(n) = 1+ exp{pn+ 2 sinh(kp)t + η0}
wherek, p andη0 are constants, for the parametersλ = ekp, µ = −λ, γ = (1− λ2)/λ;

(ii) the rational solution

g(n) = n+ 2kt

for the parametersλ = 1, µ = −1, γ = 0.
Further by applying the B̈acklund transformation (5) to the 1-soliton solutionf (n) =

1+ exp(η1) we can deduce the following 2-soliton solution

g(n) = 1+ A1 exp(η1)+ exp(η2)+ A2 exp(η1+ η2)

where

ηi = pin+ 2 sinh(kpi)t + η0
i

A1 = sinh(kp1)+ sinh(kp2)− sinh[k(p1+ p2)]

sinh(kp1)− sinh(kp2)− sinh[k(p1− p2)]
A2 = −

sinh[1
2m(p1− p2)]

sinh[1
2m(p1+ p2)]

with pi andη0
i constants, for the parametersλ = exp(kp2), µ = −λ andγ = (1− λ2)/λ.
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Example 2. In this we consider an extended differential-difference KdV equation

[aDz sinh( 1
2maDn)+ sinh( 1

2kaDn) sinh( 1
2(m− k)aDn)]f (n) · f (n) = 0 (6)

[4a3Dt sinh( 1
2maDn)± aDz sinh(( 1

2m− k)aDn)− 3 sinh( 1
2kaDn) sinh( 1

2(m− k)aDn)]

×f (n) · f (n) = 0 (7)

where z is an auxiliary variable andm, k are two integers. In particular, whenm = 1,
k = −1 and the minus sign is taken in (7), orm = 1, k = 2 and the plus sign is taken in
(7), equations (6) and (7) become a differential-difference KdV equation proposed by Ohta
and Hirota [17]. For this reason we call (6) and (7) an extended differential-difference KdV
equation. Again we can show the system (6) and (7) is integrable. In fact we have the
following.

Proposition 2. A Bäcklund transformation for equations (6) and (7) is

exp( 1
2(m− k)aDn)f (n) · g(n) = [λ exp{ 12(m+ k)aDn} + µ exp{ 12(k −m)aDn}]

×f (n) · g(n) (8)

[2aDz + λ exp(kaDn)+ γ ]f (n) · g(n) = 0 (9)

[8a3Dt + (−3± 1)λ exp(kaDn)± 2aλDz exp(kaDn)± λγ exp(kaDn)+ ω]

×f (n) · g(n) = 0 (10)

whereλ, µ, γ andω are arbitrary constants.

Remark 2. Whenm = 1, k = 2, the B̈acklund transformation equations (8)–(10) with the
plus sign in (10) becomes one of thetwo Bäcklund transformations found in [18]. When
m = 1, k = −1, the B̈acklund transformation equations (8)–(10) with the minus sign in
(10) become another B̈acklund transformation for the differential-difference KdV equation.
Note that asa→ 0 the differential-difference KdV equation becomes the KdV equation.

As an application of proposition 2, we derive 1-soliton and 2-soliton solutions of the
extended differential-difference KdV equations (6) and (7). Here we only consider the case
where the plus sign is taken in (7) and (10). The case where the minus sign is taken in (7)
and (10) can be similarly considered. By applying the Bäcklund transformations (8)–(10)
to the trivial solutionf (n) = 1, we can easily obtain the following 1-soliton solution

g(n) = 1+ exp(pn+ qz + rt + η0)

where

q = λ

2a
(e−kap − 1) r = λ

4a3
(1− e−kap)+ λ2

8a3
(1− e−2kap)

with p andη0 constants, for the parameters

λ = sinh[1
2(m− k)ap]

exp(− 1
2akp) sinh( 1

2map)
µ = 1− λ γ = −λ ω = 2λ+ λ2.

Furthermore, by applying the Bäcklund transformations (8)–(10) to the 1-soliton solution
f (n) = 1+ exp(η1), we can deduce the following 2-soliton solution

g(n) = 1+ λ1− λ2 exp(kap1)

λ1− λ2
exp(η1)+ λ1 exp(kap2)− λ2

λ1− λ2
exp(η2)

+λ1 exp(kap2)− λ2 exp(kap1)

λ1− λ2
exp(η1+ η2)
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where

ηi = pin+ qiz + ri t + η0
i λi =

sinh[1
2(m− k)api ]

exp(− 1
2akpi) sinh( 1

2mapi)

qi = λi

2a
[exp(−kapi)− 1] ri = λi

4a3
[1− exp(−kapi)] + λ2

i

8a3
[1− exp(−2kapi)]

with pi andη0
i constants,i = 1, 2, for the parameters

λ = sinh[1
2(m− k)ap2]

exp(− 1
2akp2) sinh( 1

2map2)
µ = 1− λ γ = −λ ω = 2λ+ λ2.

Example 3. In this example we consider a combined version of the two-dimensional Toda
equation and a Lotka–Volterra-like equation:

[DxDt + ADt sinh(Dn)− 4 sinh2( 1
2Dn)]f (n) · f (n) = 0 (11)

in which A is an arbitrary constant. In particular, whenA = 0, (11) becomes the two-
dimensional Toda equation [19]. Iff (n; x, t) ≡ f (n; t), then (11) becomes a special case
of an extended Lotka–Volterra equation [14]. Concerning the more general equation (11)
we have the following result.

Proposition 3. A Bäcklund transformation for (11) is

Dxf (n) · g(n) =
[
λ exp(−Dn)− A

2

4λ
exp(Dn)+ µ

]
f (n) · g(n) (12)

[−4λDt exp(− 1
2Dn)+ 2ADt exp( 1

2Dn)]f (n) · g(n)

=
[(

4− A

2λ
γ

)
exp( 1

2Dn)+ γ exp(− 1
2Dn)

]
f (n) · g(n) (13)

whereλ, µ andγ are arbitrary constants.

In the following, we derive 1-soliton and 2-soliton solutions of (11) using the Bäcklund
transformation (12) and (13). For simplicity, we setA = 2. In this case, by applying
the B̈acklund transformations (12) and (13) to the trivial solutionf (n) = 1, we can easily
obtain the following 1-soliton solution

g(n) = 1+ exp(pn+ qx + rt + η0)

where

q = λ(1− ep)+ e−p − 1

λ
r = λ

1− λ
ep − 1

λep − 1

with p andη0 constants, for the parametersµ = (1−λ2)/λ, γ = 4λ/(1− λ). Furthermore,
by applying the B̈acklund transformations (12) and (13) to the 1-soliton solutionf (n) =
1+ exp(η1), we can derive the following 2-soliton solution

g(n) = 1+ A1 exp(η1)+ exp(η2)+ A2 exp(η1+ η2)

where

ηi = pin+ qix + ri t + η0
i qi = λi [1− exp(pi)] + exp(−pi)− 1

λi

ri = λi

1− λi
exp(pi)− 1

λi exp(pi)− 1
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A1 = (λ1λ2− 1)[λ1− λ2 exp(pi)]

(λ1− λ2)[λ1λ2− exp(pi)]

A2 = λ2(q1− q2)+ (1− λ2
2) exp(−p1+ p2)+ λ2

2− 1

λ2(q1+ q2)+ (λ2
2− 1) exp(p1+ p2)+ 1− λ2

2

with λi , pi and η0
i constants, for the parametersλ = λ2, µ = (1 − λ2

2)/λ2 and
γ = 4λ2/(1− λ2).

Propositions 1–3 can be proved by using bilinear operator identities. In the appendix,
we give a proof in detail of proposition 2 as an illustrative example.

To summarize, in this letter a simple procedure for searching for integrable discrete
systems in a bilinear form is described, and three new integrable differential-difference
systems are reported. In each case the corresponding Bäcklund transformations are
presented. Moreover, by using these Bäcklund transformations, we can derive further
results obtaining exact solutions, such as soliton solutions and rational solutions. Thus, in
particular, by starting from the B̈acklund transformation equations (8)–(10) as an example,
we can derive the following result for equations (6) and (7).

Proposition 4. Let f0 be a solution of the extended differential-difference KdV equations
(6) and (7) and suppose thatfi , i = 1, 2, is a solution of equations (6) and (7), which is
related byf0 under the B̈acklund transformation equations (8)–(10) taken with parameters

(λi, µi, γi, ωi), i.e. f0
(λi ,µi ,γi ,ωi )−→ fi , i = 1, 2; λ1, λ2, µ1, µ2 6= 0, andfj 6= 0, j = 0, 1, 2.

Thenf12 defined by

exp( 1
2kaDn)f0 · f12 = c[λ1 exp(− 1

2kaDn)− λ2 exp( 1
2kaDn)]f1 · f2 (14)

in which c is a non-zero constant, is a new solution of equations (6) and (7) which is related
to f1 andf2 under the B̈acklund transformation equations (8)–(10) taken with parameters
(λ2, µ2, γ2, ω2), (λ1, µ1, γ1, ω1), respectively.

XBH gratefully acknowledges support by the Royal Society, the Chinese Academy of
Sciences and the National Natural Science Foundation of China.

Appendix. Proof of proposition 2

First we list some bilinear operator identities:

[Dy sinh(δDn)a · a][exp(δDn)b · b] − [Dy sinh(δDn)b · b][exp(δDn)a · a]

= 2 sinh(δDn)(Dya · b) · ab (A.1)

[Dy sinh(δ1Dn)a · a][exp(δ2Dn)b · b] − [Dy sinh(δ1Dn)b · b][exp(δ2Dn)a · a]

= Dy cosh( 1
2(δ1− δ2)Dn)[exp( 1

2(δ1+ δ2)Dn)a · b] · [exp(− 1
2(δ1+ δ2)Dn)a · b]

+ sinh( 1
2(δ1−δ2)Dn){[Dy exp( 1

2(δ1+δ2)Dn)a · b] · [exp(− 1
2(δ1+δ2)Dn)a · b]

−[exp( 1
2(δ1+ δ2)Dn)a · b] · [Dy exp(− 1

2(δ1+ δ2)Dn)a · b]} (A.2)

[sinh(δ1Dn) sinh(δ2Dn)a · a][exp((δ1+ δ2)Dn)b · b]

−[sinh(δ1Dn) sinh(δ2Dn)b · b][exp((δ1+ δ2)Dn)a · a]

= sinh(δ1Dn)[exp(δ2Dn)a · b] · [exp(−δ2Dn)a · b] (A.3)

sinh(δDn)a · a = 0 (A.4)
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Dy cosh(δ1Dn)[exp((δ1+ δ2)Dn)a · b] · [exp((δ1− δ2)Dn)a · b]

= sinh(δ2Dn)[Dy exp(2δ1Dn)a · b] · ab
+ sinh(δ2Dn)(Dya · b) · [exp(2δ1Dn)a · b]. (A.5)

We now turn to the proof of proposition 2. Letf (n) be a solution of equations (6) and (7).
If we can show that equations (8)–(10) guarantee that the following two relations hold,

P1 ≡ [aDz sinh( 1
2maDn)+ sinh( 1

2kaDn) sinh( 1
2(m− k)aDn)]g(n) · g(n) = 0

and

P2 ≡ [4a3Dt sinh( 1
2maDn)± aDz sinh(( 1

2m− k)aDn)

−3 sinh( 1
2kaDn) sinh( 1

2(m− k)aDn)]g(n) · g(n) = 0

then equations (8)–(10) form a Bäcklund transformation.
In fact, in analogy with the proof already given in [16], we know thatP1 = 0 can be

proved using equations (8) and (9). Thus it suffices to show thatP2 = 0. For this, by
making use of (A.1)–(A.3), we have

−[exp( 1
2maDn)f (n) · f (n)]P2 = 8a3 sinh( 1

2maDn)(Dt f (n) · g(n)) · f (n)g(n)
−3 sinh( 1

2kaDn)[exp( 1
2(m− k)aDn)f (n) · g(n)]

·[exp( 1
2(k −m)aDn)f (n) · g(n)]

±aDz cosh( 1
2kaDn)[exp( 1

2(m− k)aDn)f (n) · g(n)]
·[exp( 1

2(k −m)aDn)f (n) · g(n)]
∓a sinh( 1

2kaDn){[Dz exp( 1
2(m− k)aDn)f (n) · g(n)]

·[exp( 1
2(k −m)aDn)f (n) · g(n)]

−[exp( 1
2(m− k)aDn)f (n) · g(n)] · [Dz exp( 1

2(k −m)aDn)f (n) · g(n)]}.
(A.6)

On the other hand, using the fact thatP1 = 0 and thatf (n) is a solution of (6), we know
that

[exp(( 1
2m− k)aDn)g(n) · g(n)]

×[aDz sinh( 1
2maDn)+ sinh( 1

2kaDn) sinh( 1
2(m− k)aDn)]f (n) · f (n)

= [exp(( 1
2m− k)aDn)f (n) · f (n)]

×[aDz sinh( 1
2maDn)+ sinh( 1

2kaDn) sinh( 1
2(m− k)aDn)]g(n) · g(n)

and from this it follows, by using (A.2) and (A.3), that

−a sinh( 1
2kaDn){[Dz exp( 1

2(m− k)aDn)f (n) · g(n)] · [exp( 1
2(k −m)aDn)f (n) · g(n)]

−[exp( 1
2(m− k)aDn)f (n) · g(n)] · [Dz exp( 1

2(k −m)aDn)f (n) · g(n)]}
= aDz cosh( 1

2kaDn)[exp( 1
2(m− k)aDn)f (n) · g(n)]

·[exp( 1
2(k −m)aDn)f (n) · g(n)]

+ sinh( 1
2kaDn)[exp( 1

2(m− k)aDn)f (n) · g(n)]
·[exp( 1

2(k −m)aDn)f (n) · g(n)].
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Thus by using equations (8)–(10), (A.4) and (A.5), we find that (A.6) becomes

−[exp( 1
2maDn)f (n) · f (n)]P2

= 8a3 sinh( 1
2maDn)(Dt f (n) · g(n)) · f (n)g(n)

+(−3± 1) sinh( 1
2kaDn)[exp( 1

2(m− k)aDn)f (n) · g(n)]
·[exp( 1

2(k −m)aDn)f (n) · g(n)]
±2aDz cosh( 1

2kaDn)[exp( 1
2(m− k)aDn)f (n) · g(n)]

·[exp( 1
2(k −m)aDn)f (n) · g(n)]

= 8a3 sinh( 1
2maDn)(Dt f (n) · g(n)) · f (n)g(n)

+(−3± 1)λ sinh( 1
2kaDn)[exp( 1

2(m+ k)aDn)f (n) · g(n)]
·[exp( 1

2(k −m)aDn)f (n) · g(n)]
±2aλDz cosh( 1

2kaDn)[exp( 1
2(m+ k)aDn)f (n) · g(n)]

·[exp( 1
2(k −m)aDn)f (n) · g(n)]

= 8a3 sinh( 1
2maDn)(Dt f (n) · g(n)) · f (n)g(n)

+(−3± 1)λ sinh( 1
2maDn)[exp(kaDn)f (n) · g(n)] · f (n)g(n)

±2aλ sinh( 1
2maDn)[Dz exp(kaDn)f (n) · g(n)] · f (n)g(n)

±2aλ sinh( 1
2maDn)(Dzf (n) · g(n)) · [exp(kaDn)f (n) · g(n)]

= 8a3 sinh( 1
2maDn)(Dt f (n) · g(n)) · f (n)g(n)

+(−3± 1)λ sinh( 1
2maDn)[exp(kaDn)f (n) · g(n)] · f (n)g(n)

±2aλ sinh( 1
2maDn)[Dz exp(kaDn)f (n) · g(n)] · f (n)g(n)

±λγ sinh( 1
2maDn)[exp(kaDn)f (n) · g(n)] · f (n)g(n)

= 0.

In this way we have completed the proof of proposition 2.
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