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Abstract. We report a new, and relatively simple, procedure for finding new integrable
differential-difference equations. The procedure starts from a rather general differential-
difference equation taken in bilinear form and then searches for appropriat&luBd
transformations for it. In this way three particular new integrable differential-difference systems
are found and their correspondingé&klund transformations presented.

Hirota’s bilinear method has been of fundamental importance to the theory of solitons
since its inception [1-5]; and it has retained its significance throughout all of the
subsequent developments [5,6]. It is also the most direct and yet elementary approach
for constructing exact multi-soliton solutions (cf [1-5,7-9]). More recently the method
has been systematically used in the search for new integrable equations inlbeth)

and (2 + 1) dimensions by finding equations with 3-soliton, 4-soliton, and eVesoliton
solutions (cf [10-13]); as a result of such systematic tests some new examples of integrable
equations have actually been found. However, by comparison with the continuous case,
similar procedures for detecting integrable systems among the discrete lattices are scarcely
developed. The problem for these discrete cases is that conditions Mrsatiton solution

now become much more difficult to check. In the continuous casé&'tiseliton conditions

are just polynomial identities. For example, for the Korteweg—de Vries (KdV)-type equation

F(Dy,D)f-f=0 1)
in which F is a polynomial function of D, D,, and satisfies the conditions

F(@D,, D;) = F(-D,, —D,) F0,00=0
the N-soliton condition is [8]
Z F(ana,-pi, ia,-Qi)ﬁF(o;pi —0;pj,0i2 —0;Q;)o;0; =0 n=12,...,N
o=£1 \i=1 i=1 i
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in which >°__,, means the summation over all possible combinationsrof= +1,
o, =4=1,...,0, = £1; D,, D, are Hirota’s bilinear operators [7, 8] defined by

m 1 a a " a 8 . I i
Dx D;a b= (3)6 - Bx/) (81‘ - at/) alx,t)b(x’,t )|x’:x,t’:t-

In this letter, we consider the following bilinear differential-difference equation:

F(Dy, D;, sinh(1D,), ..., sinh(e,D,,)) f (n; x, 1) - f(n; x,1) = 0. 2
Here, F is an even polynomial in B D;, sinh(«1D,,), ..., and sinkig;D,,), and! is a given
positive integer; they;, i = 1, 2, ..., [, are different constants, and(0, 0, ..., 0) = 0;

exmaDn)an b, = EXD[5 (a - a>:| a(n)b(n/)ln’zn =a(n +8)bn —9).
on  on’

It is then straightforward to verify that equation (2) always has the 2-soliton solutions

f(n) =1+ expny) + expnz) + A exp(nL + n2)

where

ni = pin+qix +rit +n° F(qi,ri, sinb(o1p;), ..., sinh(e; p;)) =0 i=12
_ F(q1— g2, r1 — r2, sinha1(p1 — p2)), . . ., Sina (p1 — p2)))
F(q1+ q2,r1+ r2, sinfa1(p1 + p2)), - .., sinh(ey (p1 + p2)))
wherep;, ¢; r; and n?, fori =1, 2, are constants.
However, when we want to go on to consider which specific formg afimit 3-soliton
solutions, the corresponding calculations become more involved. Accordingly, in the
following, instead of searching for integrable systems by testingMesoliton solutions,

we propose a rather different scheme. Our procedure is to search for suitaileA and
B such that

[F(va Dz, Sinr(()lan), B Sinr(aan))f(n) : f(n)]
x[G(Dy, Dy, sinh(B1D,), ..., sinh(B;,D,))g(n) - g(n)]
= [F(st Dt’ Sinh(aan), ey Sinh(qu,l))g(n) : g(”)]
x[G(Dy, Dy, sinn(B1D,), ..., sinh(8,,D,)) f (n) - f ()]
can be derived from

A(Dx» Dtv eXp(Van), sy exaysan)f(n) : g(”) =0
B(D,, D;, exp(w1D,), ..., explwy,D,) f(n) - g(n) =0 3)

A1 =

wheres;, i = 1,2, 3, are given positive integers aift, i = 1,...,51, ¥, j =1...,52,
and wy, Kk = 1,...,s3, are constants. In this circumstance, (3) may be viewed as a
Backlund transformation for (2) i&(D,, D;, sinh(81D,,), ..., sinh(8,,D,)) f(n) - f(n) # O,
a viewpoint which, by the introduction df andG, seems somewhat more general than that
of [7] for discovering Bicklund transformations. Then, otherwised in so far as B¢klund
transformations are characteristic of integrable systeatgiation (2) is an integrable system.
Evidently it is relatively simple to find new integrable differential-difference systems in
Hirota’s bilinear form (2) by following this particular route.

In this letter we reporthree new integrable differential-difference equations found in
this way.
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Example 1. In this example we consider
[D, sinh(3mD,) — 2 sin(3kD,) sinh(3 (m — k)D,) + 2« Sin(3kD,,) sinh(3 (m + k)D,)]
xf(n)- f(n) =0 (4)

wherem andk are two integers and is an arbitrary constant. In particular, when= 0,

(4) becomes an extended Lotka—Volterra equation [14]. Whea 1, k = 2, (4) can be
easily transformed into the generalized Lotka—Volterra equation found by Tsujimoto and
Hirota [15]. We can show (4) is integrable in the sense atlBund transformations. In
fact we have the following.

Proposition 1. A Backlund transformation for (4) is
exp(;(m — k)D,)) f (n) - g(n)
= [x exp(3(m + k)D,,) + wexp(z (k —m)D,) + % exp(—3(m + k)Dn)}
X f(n) - g(n)
[Dt — % expkD,) — . exp(—kD,) — y} fn)-g(n) =0 (5)

wherei, u andy are arbitrary constants.

Remark 1. Whena = 0, the Backlund transformation (5) reduces to that in [16] for an
extended Lotka—Volterra equation [14, 16].

Here, in the following, we derive some solutions of the bilinear equation (4) using the
Backlund transformation (5). For simplicity, we set= —1. In this case, by applying
the Backlund transformation (5) to the trivial solutiof(n) = 1, we can easily obtain the
following solutions:

(i) the 1-soliton solution

g(n) = 1+ exp{pn + 2sinhkp)t + n°)

wherek, p andn° are constants, for the parametérs: €7, = —1, y = (1 — A2)/A;
(ii) the rational solution

gn) =n+ 2kt

for the parameters =1, u = -1,y =0.
Further by applying the &klund transformation (5) to the 1-soliton solutigiin) =
1+ exp(n1) we can deduce the following 2-soliton solution

g(n) =1+ Arexpny) + explnz) + Az exp(ni + n2)
where
ni = pin + 2sinhkp;)t + 1/

_ sinhtkpy) + sinhkps) — sinhlk(p1 + p2)] _ _sinhzm(p1 — pa)]
" sinh(kp) — sinh(kpz) — sinhk(p1 — p2)] 27 sinhm(pr + p2)]

1

with p; andn? constants, for the parameters= expkps), u = —1 andy = (1 — 1?)/A.
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Example 2. In this we consider an extended differential-difference KdV equation

[aD, sinh(3maD,) + sinh(3kaD,) sinh(3(m — k)aD,)] f(n) - f(n) =0 (6)
[4a®D; sinh(3maD,) £ aD, sink((3m — k)aD,) — 3sinh(3kaD,) sinh(3(m — k)aD,)]
xf@m)- f(n) =0 (7

where z is an auxiliary variable and:, k are two integers. In particular, when = 1,

k = —1 and the minus sign is taken in (7), mr= 1, k = 2 and the plus sign is taken in

(7), equations (6) and (7) become a differential-difference KdV equation proposed by Ohta
and Hirota [17]. For this reason we call (6) and (7) an extended differential-difference KdV
equation. Again we can show the system (6) and (7) is integrable. In fact we have the
following.

Proposition 2. A Backlund transformation for equations (6) and (7) is
exp(3(m — k)aD,) f(n) - g(n) = [ exp{3(m + k)aD,} +  exp{3(k — m)aD,}]

x f(n) - gn) 8)
[2aD, + A exp(kaD,) + y1f(n) - g(n) =0 9)
[84°D, + (—3 + 1)A expkaD,) &+ 2aAD, exp(kaD,) + Ay expkaD,) + o]

X f(n)-gn)=0 (10)

where, u, y andw are arbitrary constants.

Remark 2. Whenm = 1, k = 2, the Backlund transformation equations (8)—(10) with the
plus sign in (10) becomes one of theo Backlund transformations found in [18]. When
m = 1, k = —1, the Backlund transformation equations (8)—(10) with the minus sign in
(10) become another&klund transformation for the differential-difference KdV equation.
Note that as: — 0 the differential-difference KdV equation becomes the KdV equation.

As an application of proposition 2, we derive 1-soliton and 2-soliton solutions of the
extended differential-difference KdV equations (6) and (7). Here we only consider the case
where the plus sign is taken in (7) and (10). The case where the minus sign is taken in (7)
and (10) can be similarly considered. By applying thicBund transformations (8)—(10)
to the trivial solutionf (n) = 1, we can easily obtain the following 1-soliton solution

gn) =1+exp(pn +qz +rt+ n°)

where
2

A A A
q= Z(e_k“p -1 r= @(1 — g kary @(1 — g 2kap)

with p andn°® constants, for the parameters
Sinh[% (m — k)ap]
B exp(—3akp) sinh(3map)
Furthermore, by applying the&klund transformations (8)—(10) to the 1-soliton solution
f(n) =1+ exp(ni), we can deduce the following 2-soliton solution

r1 — doexplkapy) r1explkaps) — Ao
gn) =1+ exp(ny) + exp(nz)
A — Ao AL — A2
N A1 explkapy) — Ao explkapy)

Al — A2

w=1—x Yy =—X w =21+ A%

exp(ny + 12)
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where

_ Sinh[%(m —k)api]

B eX[X—%akp,-) Sinl’(%mapi)
2

Y i X
qi = Z[eXp(—kapi) —1] ri = @[1 — exp(—kap;)] + 8a3[1 — exp(—2kap;)]

n = pin+qiz +rit +n° Ai

with p; and n? constantsj = 1, 2, for the parameters
Sinh[%(m —k)ap,]
exq—%akpz) Sinh(%mapz)

w=1—2x Yy =—A o =2\ + A2

Example 3. In this example we consider a combined version of the two-dimensional Toda
equation and a Lotka—\Volterra-like equation:

[D.D; + AD, sinh(D,) — 4sintf(3D,)]1 f(n) - f(n) =0 (11)

in which A is an arbitrary constant. In particular, when= 0, (11) becomes the two-
dimensional Toda equation [19]. if(n; x,) = f(n;t), then (11) becomes a special case

of an extended Lotka—\olterra equation [14]. Concerning the more general equation (11)
we have the following result.

Proposition 3. A Backlund transformation for (11) is

A2
D, f(n)-gn) = [,\ exp(—D,) — m expD,) + /L}f(n) -g(n) (12)
[—4AD, exp(—3D,) + 2AD, exp(3D,)] f (n) - g(n)
A
_ [(4_ my> exp(D,) +yexp(—;Dn>]f<n> g() (13)

wherei, u andy are arbitrary constants.

In the following, we derive 1-soliton and 2-soliton solutions of (11) using thekBind
transformation (12) and (13). For simplicity, we sét= 2. In this case, by applying
the Backlund transformations (12) and (13) to the trivial solutibe) = 1, we can easily
obtain the following 1-soliton solution

g(n) =1+ exp(pn +gx +rt +1°
where
er—1 A er—1
Tt e —1

with p andn° constants, for the parameters= (1—1?)/x, y = 41/(1 — ). Furthermore,
by applying the Bcklund transformations (12) and (13) to the 1-soliton solutign) =
1+ exp(n1), we can derive the following 2-soliton solution

g(n) = 1+ Ajexpny) + expnz) + Az exp(ni + n2)

g=21-¢€)+

where
exp(—pi) —1
n = pin +qix +rit +n° qi =Ai[1—exﬂpi)]+%
~ hoexplp) -1
- 1-— Ai A exp(p[) -1

ri
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_ (G2 = DA — Ao exp(pi)]
B (A — )\2)[)»1)@ - eX[Xp,-)]
A, = M2ar—g2) + (11— A2) exp(—p1+ p2) + 23— 1
h2(q1+g2) + (A5 — 1) exp(pr + p2) + 1 — A3

with %;, p; and »? constants, for the parameteis = i, u = (1 — A3)/xr, and
Yy =4h2/(1—12).

Propositions 1-3 can be proved by using bilinear operator identities. In the appendix,
we give a proof in detail of proposition 2 as an illustrative example.

To summarize, in this letter a simple procedure for searching for integrable discrete
systems in a bilinear form is described, and three new integrable differential-difference
systems are reported. In each case the correspondauklid transformations are
presented. Moreover, by using thes@cklund transformations, we can derive further
results obtaining exact solutions, such as soliton solutions and rational solutions. Thus, in
particular, by starting from the &klund transformation equations (8)—(10) as an example,
we can derive the following result for equations (6) and (7).

Proposition 4. Let fy be a solution of the extended differential-difference KdV equations
(6) and (7) and suppose thgt, i = 1, 2, is a solution of equations (6) and (7), which is
related by fo under the Bicklund transformation equations (8)—(10) taken with parameters

. ()\u isVis i) . .
i i Yio 1), 180 fo S p i = 1,25 A, hoo e p # 0, and f; £ 0, j = 0,1, 2.

Then f1, defined by
exp(3kaD,) fo - fi2 = c[h1€Xp(—3kaD,) — A exp(zkaD,)] f1- f2 (14)

in which ¢ is a non-zero constant, is a new solution of equations (6) and (7) which is related
to f1 and f, under the Bcklund transformation equations (8)—(10) taken with parameters
(A2, U2, Y2, 2), (A1, 1, y1, @1), respectively.

XBH gratefully acknowledges support by the Royal Society, the Chinese Academy of
Sciences and the National Natural Science Foundation of China.

Appendix. Proof of proposition 2

First we list some bilinear operator identities:
[D, sinh(8D,)a - al[exp(8D,)b - b] — [D,, sinh(8D,,)b - b][exp(8D,)a - a]
= 2sinh(8D,))(Dya - b) - ab (A1)
[D, sinh(81D,)a - al[exp(62D,)b - b] — [D, sinh(81D,,)b - b][exp(82D,)a - a]
= D, cosh(3(81 — 82)D,)[exp(5 (81 + 82)D,)a - b] - [exp(—3(81 + 82)D,)a - b]
+sinh(3 (81 —82)D,){[D, exp(3(81+52)Dy)a - b] - [exp(—5(81+82)Da)a - b]
—[exp(3(81+ 82)D,)a - b] - [Dy exp(—3 (81 + 82)Dy)a - b]} (A.2)
[sinh(81D,,) sinh(82D,,)a - a][exp((§1 + §2)D,)b - b]
—[sinh(61D,) sinh(62D,,)b - b][exp((81 + 82)D,)a - a]
= sinh(é1D,)[exp(62D,)a - b] - [exp(—32D,)a - b] (A.3)
sinh(6D,)a -a =0 (A.4)
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D, cosh($1D,)[exp((81 + 82)Dy)a - b] - [€Xp((81 — 82)Dy)a - b]
= sinh(SzD,,)[Dy eX[XZ(San)a . b] -ab
+sinh(62D,,)(Dya - b) - [exp(261Dy)a - b]. (A.5)

We now turn to the proof of proposition 2. Lgt(n) be a solution of equations (6) and (7).
If we can show that equations (8)—-(10) guarantee that the following two relations hold,

Py = [aD, sinh(3maD,) + sinh(3kaD,) sinh(}(m — k)aD,)lg(n) - g(n) =0
and

P, = [44°D, Sinh(%maD,,) +aD, Sinh((%m — k)aD,)
—3sinh(3kaD,) sinh(3(m — k)aD,)]g(n) - g(n) =0
then equations (8)—(10) form adBklund transformation.

In fact, in analogy with the proof already given in [16], we know tiat= 0 can be
proved using equations (8) and (9). Thus it suffices to show faat 0. For this, by
making use of (A.1)—(A.3), we have
—[exp(3maD,) f (1) - f (m)] P, = 8a®sinh(3maD,) (D, f (1) - g(n)) - f (n)g(n)

—3sinf(zkaD,)[exp(3(m — k)aD,) f (n) - g(n)]

[exp(3(k — m)aD,) f (n) - g(n)]

+aD; cosh(zkaD,)[exp(z(m — k)aD,) f (1) - g(n)]

[exp(3(k — m)aD,) f (n) - g(n)]

Fasinh(3kaD,){[D. exp(3(m — k)aD,) f (n) - g(n)]

[exp(3(k — m)aD,) f (n) - g(n)]

—[exp(30m — k)aD,) f (1) - ()] - [D. exp(3 (k — m)aD,) f(n) - ()]}

(A.6)

On the other hand, using the fact thet = 0 and thatf (n) is a solution of (6), we know
that
[exp((3m — k)aD,)g(n) - g(n)]

x[aD, sinh(3maD,) + sin(3kaD,,) sinh(3 (m — k)aD,)] f (n) - f (n)

= [exp((3m — k)aD,) f (n) - f(n)]

x[aD, sinh(3maD,) + sinh(3kaD,) sin(5(m — k)aD,)]g(n) - g(n)

and from this it follows, by using (A.2) and (A.3), that

—a sinh(3kaD,){[D. exp(5(m — k)aD,) f (n) - g(n)] - [exp(5(k — m)aD,) f (n) - g(n)]
—[exp(3(m — k)aD,) f (n) - g(n)] - [D exp(3(k — m)aD,) f (n) - g(n)]}
= aD, cosh(kaD,)[exp(3(m — k)aD,) f (n) - g(n)]
[exp(3(k —m)aD,) f (n) - g(n)]
+ sinh(3kaD,)[exp(3 (m — k)aD,) f (n) - g(n)]
[exp(3 (k — m)aD,) f (n) - g(m)].
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Thus by using equations (8)—(10), (A.4) and (A.5), we find that (A.6) becomes
—[exp(3maD,) f () - f (W] P,

= 84°sinh(3maD,)(D, f (n) - g(n)) - f()g(n)
+(—3+ 1) sinh(3kaD,)[exp(3(m — k)aD,) f (n) - g(n)]
[exp(3(k —m)aD,) f (n) - g(n)]
+2aD, cosh(3kaD,)[exp(3(m — k)aD,) f (n) - g(n)]
[exp(3(k — m)aD,) f (n) - g(n)]
= 84°sinh(3maD,)(D, f (n) - g(n)) - f(m)g(n)
+(=3=£ D)rsinh(GkaD,)[exp(; (m + k)aD,) f (n) - g(n)]
[exp(3(k — m)aD,) f (n) - g(n)]
+2a1D, cosh(3kaD,)[exp(3(m + k)aD,) f (n) - g(n)]
[exp(3(k —m)aD,) f (n) - g(n)]
= 8a°sinh(3maD, ) (D, f (n) - g(n)) - f(n)g(n)
+(=3 % DA sinh(GmaD,)[expkaD,) f (n) - gm)] - f(n)g(n)
+2a) sin(3maD,)[D. exp(kaD,) f (n) - g(n)] - f(n)g(n)
+2a). sinh(3maD,) (D f (n) - g(n)) - [exp(kaD,) f (n) - g(n)]
= 8a°sinh(3maD,)(D, f (n) - g(n)) - f(n)g(n)
+(=3 % D sinh(3maD,)[expkaD,) f (n) - gm)] - f(n)g(n)
+2a) sin(3maD,)[D. exp(kaD,) f (n) - g(n)] - f(n)g(n)

2y sinh(3maD,)[expkaD,) f (n) - )] - f(m)g(n)
=0.

In this way we have completed the proof of proposition 2.
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